04-P004 Molecular basis of attenuation of competence to respond to FGF signal in ascidian notochord induction

نویسندگان

  • Hidehiko Hashimoto
  • Atsushi Enomoto
  • Gaku Kumano
  • Hiroki Nishida
چکیده

ences between placodes and neural crest (induction during different times of development; different developmental potential; regulation of differentiation and migration by largely nonoverlapping sets of transcription factors) this suggests that cranial placodes and neural crest cells have an independent developmental origin from non-neural and neural ectoderm, respectively. We currently perform gain and loss of function experiments in Xenopus to test whether Dlx3, Dlx5, GATA2 and/ or GATA3 genes, which are expressed throughout the non-neural ectoderm but are absent from neural ectoderm, are involved in mediating the competence of non-neural ectoderm to respond to placode inducers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The transcription factor FoxB mediates temporal loss of cellular competence for notochord induction in ascidian embryos.

In embryos of the ascidian Halocynthia roretzi, the competence of isolated presumptive notochord blastomeres to respond to fibroblast growth factor (FGF) for induction of the primary notochord decays by 1 hour after cleavage from the 32- to 64-cell stage. This study analyzes the molecular mechanisms responsible for this loss of competence and provides evidence for a novel mechanism. A forkhead ...

متن کامل

Cell fate polarization in ascidian mesenchyme/muscle precursors by directed FGF signaling and role for an additional ectodermal FGF antagonizing signal in notochord/nerve cord precursors.

Asymmetric cell division plays a fundamental role in generating various types of embryonic cell. In ascidian embryos, asymmetric cell divisions occur in the vegetal hemisphere in a manner similar to those found in Caenorhabditis elegans. Early divisions in embryos of both species involve inductive events on a single mother cell that result in production of daughters with different cell fates. H...

متن کامل

Maternal macho-1 is an intrinsic factor that makes cell response to the same FGF signal differ between mesenchyme and notochord induction in ascidian embryos.

An extracellular signaling molecule acts on several types of cells, evoking characteristic and different responses depending on intrinsic factors in the signal-receiving cells. In ascidian embryos, notochord and mesenchyme are induced in the anterior and posterior margins, respectively, of the vegetal hemisphere by the same FGF signal emanating from endoderm precursors. The difference in the re...

متن کامل

An essential role of a FoxD gene in notochord induction in Ciona embryos.

A key issue for understanding the early development of the chordate body plan is how the endoderm induces notochord formation. In the ascidian Ciona, nuclear accumulation of beta-catenin is the first step in the process of endoderm specification. We show that nuclear accumulation of beta-catenin directly activates the gene (Cs-FoxD) for a winged helix/forkhead transcription factor and that this...

متن کامل

Ras is an essential component for notochord formation during ascidian embryogenesis

In ascidian embryos, inductive interactions are necessary for the fate specification of notochord cells. Previous studies have shown that notochord induction occurs at the 32-cell stage and that basic fibroblast growth factor (bFGF) has notochord-inducing activity in ascidian embryos. In vertebrate, it is known that bFGF receptors have tyrosine kinase domain and the signaling pathway is mediate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mechanisms of Development

دوره 126  شماره 

صفحات  -

تاریخ انتشار 2009